Keratan sulfate restricts neural plasticity after spinal cord injury.
نویسندگان
چکیده
Chondroitin sulfate (CS) proteoglycans are strong inhibitors of structural rearrangement after injuries of the adult CNS. In addition to CS chains, keratan sulfate (KS) chains are also covalently attached to some proteoglycans. CS and KS sometimes share the same core protein, but exist as independent sugar chains. However, the biological significance of KS remains elusive. Here, we addressed the question of whether KS is involved in plasticity after spinal cord injury. Keratanase II (K-II) specifically degraded KS, i.e., not CS, in vivo. This enzyme digestion promoted the recovery of motor and sensory function after spinal cord injury in rats. Consistent with this, axonal regeneration/sprouting was enhanced in K-II-treated rats. K-II and the CS-degrading enzyme chondroitinase ABC exerted comparable effects in vivo and in vitro. However, these two enzymes worked neither additively nor synergistically. These data and further in vitro studies involving artificial proteoglycans (KS/CS-albumin) and heat-denatured or reduced/alkylated proteoglycans suggested that all three components of the proteoglycan moiety, i.e., the core protein, CS chains, and KS chains, were required for the inhibitory activity of proteoglycans. We conclude that KS is essential for, and has an impact comparable to that of CS on, postinjury plasticity. Our study also established that KS and CS are independent requirements for the proteoglycan-mediated inhibition of axonal regeneration/sprouting.
منابع مشابه
A combination of keratan sulfate digestion and rehabilitation promotes anatomical plasticity after rat spinal cord injury.
Functional recovery after neuronal injuries relies on neuronal network reconstruction which involves many repair processes, such as sealing of injured axon ends, axon regeneration/sprouting, and construction and refinement of synaptic connections. Chondroitin sulfate (CS) is a major inhibitor of axon regeneration/sprouting. It has been reported that the combination of task-specific rehabilitati...
متن کاملN-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury.
Neurons in the adult CNS do not spontaneously regenerate after injuries. The glycosaminoglycan keratan sulfate is induced after spinal cord injury, but its biological significance is not well understood. Here we investigated the role of keratan sulfate in functional recovery after spinal cord injury, using mice deficient in N-acetylglucosamine 6-O-sulfotransferase-1 that lack 5D4-reactive kerat...
متن کاملCurrent therapy of spinal cord injury
The spinal cord injury (SCI) refers to a condition that the damage to the spinal cord causes neurologic dysfunction. In the case of neurologic dysfunction owing to SCI, its recovery is desperate, and the pathological condition appears as the incompetence of the body. Originally, neural axons can expand even after injury and produce a recovery of the neuronal network [1]. However, the SCI leads ...
متن کاملSpinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors.
Keratan sulfate proteoglycans (KSPGs) are extracellular matrix molecules that appear to establish boundaries for axonal growth in the developing brain and spinal cord. In vitro studies confirm that KSPGs define inhibitory boundaries to extending neurites. The aim of the current study was to investigate whether KSPGs are expressed after spinal cord injury (SCI) and thereby might act as potential...
متن کاملKeratan sulfate proteoglycans in plasticity and recovery after spinal cord injury.
Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see Review of Imagama et al. The limited potential for regeneration a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 47 شماره
صفحات -
تاریخ انتشار 2011